MARTIN HAFSKJOLD THORESEN, ISTA, Austria
ACM Reference Format:

Martin Hafskjold Thoresen. 2022. . 1, 1 (August 2022), 3 pages.

1 DESIGN OF WIRE PUZZLES

In the past decade, graphics researchers have developed a wide
range of computational tools for puzzle design, including types of
puzzles like interlocking puzzles [Chen et al. 2022; Song et al. 2012],
centrifugal puzzles [Kita and Saito 2020], polymino puzzles [Lo et al.
2009], and jigsaw puzzles [Elber and Kim 2022]. Puzzles are mainly
recreational, but techniques and ideas developed in the context of
puzzle design are often transferable to other domains.

In this project we want to design wire puzzles, which is a kind
of entanglement puzzle consisting of rigid space curves that are
tangled up (Figure 1), and the goal of the puzzle is to untangle them.
A method for solving wire puzzles has been proposed [Zhang et al.
2020], but techniques for design are still missing. One challenge with
wire puzzle design is that they consist of smooth curves which twist
and slide in 3 dimensions. This contrasts the literature on puzzle
design which mainly deal with discrete and often voxelized pieces
that only move in orthogonal directions, so current techniques for
computational puzzle design are not applicable to wire puzzles.

(a) The alpha puzzle.

(b) The devil’s claw puzzle.

Fig. 1. Two examples of wire puzzles. Both puzzles contain two identical
pieces. The goal of the puzzle is to untangle the two pieces.

1.1 The Key Idea

The key idea we propose is to decouple the design of the puzzle
with the geometry of the wire, and it is motivated by the following
observation also made by Zhang et al. [2020]: the pieces in the alpha
puzzle (Figure 1a) contain a gap where the wire cross, and solving
the puzzle involves realizing that while the gap is too small for a
wire to cross under, one can align the two gaps of the two pieces and
twist the blue loop out of the red loop so that it is trivially removable
(Figure 2). In a similar way, to solve devil’s claw (Figure 1b) one needs

Author’s address: Martin Hafskjold Thoresen, mthorese@ista.ac.at, ISTA, Am Campus
1, Klosterneuburg, Austria.

2022. XXXX-XXXX/2022/8-ART $15.00
https://doi.org/

Fig. 2. The key part of the solution to the alpha puzzle is when the gap of
the two pieces are aligned, which allows a twisting motion.

to align the two long tunnels in an orthogonal fashion and slide
one piece out of the other. We claim that once this observation is
made, the puzzles are relatively easy as the only thing that remains
is aligning the pieces.

1.2 An Intrinsic Representation

What does it mean to design a wire puzzle without geometry? We
can model the key idea directly by representing the gap as a Gap
node in a “knot-like” graph representation (Figure 3). We call this
the intrinsic puzzle, and the representation its intrinsic representation
(IR). The graph models only models the topology of the puzzle, like
connectivity and the different types of mechanisms that the we can
have in wire puzzles, like the gap in alpha as a GAP node, or the
tunnel in devil’s claw as a TUNNEL node.

There are multiple reasons for why we propose to design wire
puzzles this way: (1) it allows the designer to focus on the intrinsic
part of the puzzle, which we claim is the more interesting part; (2) the
time required for design is reduced since the designer does not have
to manually ensure that the geometry conforms to the intrinsic
specification; (3) it has a very natural discrete representation which
significantly reduces the complexity of computing solutions to a
design.

1.3 Geometry

Still, we need wire geometry to realize the puzzle designs. Our
observation is that many of the geometrical aspects of the puzzles
are either of low importance or have significant leeway. In alpha, the
gap has to be small enough for a wire not to cross and large enough
for the twist to be possible, but within the range it could vary freely.
Further, the size or shape of the loop, or the length of the straight

\,

Fig. 3. A single piece from the alpha puzzle (left), our proposed intrinsic
representation of the piece (middle), and the representation of the alpha
puzzle (right). The blue node represents the gap where the wire cross.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/

2« Martin Hafskjold Thoresen

Fig. 4. The devil’s claw can be deformed into a much simpler puzzle without
breaking the intrinsic solution of the puzzle. We first collapse the straight
rods of the puzzle to have € length. Then we flatten the bend so that the
whole structure is planar. The simplification changes the puzzles perceived
difficulty dramatically, to being almost trivial. We conclude that changing
the geometry of the puzzle is necessary to create interesting puzzles.

wires, are also not integral to the puzzle, although they do have
constraints. The proposed approach is to automatically generate
geometry that conforms to these constraints.

Some puzzles have a simple intrinsic solution, but a complex real-
ization. The devil’s claw is one example, which intrinsic solution is
aligning the tunnels of the two pieces orthogonally so that one piece
can slide through the other. The geometry of the puzzle is more
complex than what the intrinsic solution would suggest, in order
for the puzzle not to be trivial. Figure 4 shows a transformation
from the puzzle piece to its IR. To allow the design of similar puzzles
we output the generated geometry in a “CAD-like” parameterized
form so that the designer can edit the geometry, under constraints
to ensure that the puzzle is not made impossible.

1.4 Attacks and Open Problems

There are many interesting directions and sub-problems for the
components of this project. Here we list the ones we find most
important.

1.4.1 Intrinsic Representation. We have seen two mechanisms that
can be used for puzzles, namely Gap and TUNNEL. It is not clear
which other mechanisms can be modeled in the same fashion, and
a natural approach is to look at already designed wire puzzles and
find patterns in how the pieces move. One can for instance imagine
a mechanism that combines translation and rotation.

The entanglement of the pieces of the puzzle also has to be modeled.
For instance, in alpha we can specify that the loop Loop;, of the
blue piece goes through the hole HoLE, of the red piece as the
relationship through(Loory, HoLE,). Figure 5 shows a suggested
in-memory representation of the components of the alpha IR. Using
this graph we can compute that to align the GAps we can move GAp,
to be in HOLE,, and since GAP, is on Loop,, they can be aligned.
Further, we will likely need to explicitly impose an ordering of the

, Vol. 1, No. 1, Article . Publication date: August 2022.

adjacency’s for each components so that we can ensure that the
Robs does not obstruct the HOLE.

1.4.2 Solving IR. One of the main strengths of the proposed model
is that we have defined the intrinsic puzzle as a discrete system, so
we can use graph search to find solutions. The initial configuration
(Figure 5) can be a node in a configuration graph, and movements in
the IR corresponds to following edges in the graph. A movement
can induce constraints on the components of the puzzle, for instance
that a piece fits through a hole. By ensuring that the constraint set
is consistent, we can guarantee that the intrinsic puzzle is solvable.

It is not clear how to encode the puzzle moves in the IR, nor how
to compute the constraints for a given move. One option is to re-
strict the possible motions to a predefined set which we know how
to compute the constraints of. If the puzzle pieces are tangled in
multiple positions, or if a piece is not completely rigid but consist of
multiple sub-pieces like a linkage, computing moves becomes more

difficult.

1.4.3 Generating Geometry. We can build a library of primitive
shapes, like rods, helices, loops, and bends, all parameterized by
lengths, radii, and so on, and use these primitives to generate the
geometry for a IR. This offers flexibility of choice for a design,
without being too restrictive. Having a discrete set of building blocks
also makes the conversion convenient, and there are many natural
mappings from the nodes to the geometric primitives: for instance,
for a loop containing a GAP node we know that the loop cannot stay
in one plane, and so a simple loop cannot be used, but a helix can.

The primitives have associated parameters, and constraints from
the IR solution, so for each primitive we need to choose feasible
parameters. The designer could easily add in their own constraints to
this system, for instance to ensure that the curvature is always lower
than a certain level. This would be very useful from a fabricational
standpoint. For values with few or no constraints we can sample
values from a predefined distribution that makes physical sense,
tailored to each primitive.

[Ropy | [Rop, | [Ropy | [Ropy |
GAP Gar
HoLE ---7-1HoLE
-
*C(\(O\)%
LoopK-----7~ Loor
The blue piece The red piece

Fig. 5. A potential in-memory representation of the alpha puzzle. The Gap
has four ordered connections, two to the two Robs and two to the endpoints
of the Loop. The Loop has a reference to the HoLE which it encloses. The
blue loop goes through the red hole, represented by the dashed line. By
symmetry, the red loop is also contained in the blue hole, but this is not
shown.

1.4.4 Collision-aware Editing. When the user changes the geometry
parameters we must make sure that the puzzle is still solvable. We
can use that we already know the trajectory of the pieces for the
solution, and constrain the parameter changes to be conforming to
this solution. For two-piece puzzles we can fix one piece and sweep
the other piece along the solution path to obtain a sweep volume
that has to be free of geometry for the solution to be possible. We can
then restrict the allowed changes of the parameterized shape to not
intersect the swept volume. If the puzzle pieces are symmetric, we

will need to update the swept volume as we change the parameters.

For puzzle pieces consisting of multiple pieces we need another
approach, because the order of the movements for the different
pieces could be important.

REFERENCES

Rulin Chen, Zigi Wang, Peng Song, and Bernd Bickel. 2022. Computational Design of
High-level Interlocking Puzzles. ACM Transactions on Graphics (SSGGRAPH 2022)
41, 4 (2022), 150:1 - 150:15.

Gershon Elber and Myung-Soo Kim. 2022. Synthesis of 3D jigsaw puzzles over freeform
2-manifolds. Computers & Graphics 102 (2022), 339-348. https://doi.org/10.1016/j.
cag.2021.10.014

Naoki Kita and Takafumi Saito. 2020. Computational design of generalized centrifugal
puzzles. Computers & Graphics 90 (2020), 21-28. https://doi.org/10.1016/j.cag.2020.
05.005

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. ACM Trans.
Graph. 28, 5 (dec 2009), 1-8. https://doi.org/10.1145/1618452.1618503

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles.
ACM Trans. Graph. 31, 6, Article 128 (nov 2012), 10 pages. https://doi.org/10.1145/
2366145.2366147

Xinya Zhang, Robert Belfer, Paul G Kry, and Etienne Vouga. 2020. C-Space Tunnel
Discovery for Puzzle Path Planning. ACM Transactions on Graphics (TOG) 39, 4,
Article 104 (2020), 14 pages.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1016/j.cag.2021.10.014
https://doi.org/10.1016/j.cag.2021.10.014
https://doi.org/10.1016/j.cag.2020.05.005
https://doi.org/10.1016/j.cag.2020.05.005
https://doi.org/10.1145/1618452.1618503
https://doi.org/10.1145/2366145.2366147
https://doi.org/10.1145/2366145.2366147

	1 Design of Wire Puzzles
	1.1 The Key Idea
	1.2 An Intrinsic Representation
	1.3 Geometry
	1.4 Attacks and Open Problems

	References

