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1 TWIST-HINGE DISSECTIONS
A geometric dissection is a partition of a shape into pieces that can be
rearranged to form another shape (Figure 1a). The Wallace-Bolyai-
Gerwien theorem says that any two polygons of equal area has
such a partition [Gardner 1985], but the number and shape of the
pieces can be physically intractable to manufacture, and finding the
minimum number of pieces, either exactly or to a constant factor
approximation, is NP-hard [Bosboom et al. 2015]. The graphics
community has shown interest in this problem through a method
to compute dissections for lattice-based polygons [Zhou and Wang
2012], and approximate dissections, where the pieces does not have
to reproduce the shapes exactly [Duncan et al. 2017].

(a) A geometric dissection. (b) A hinged dissection.

Fig. 1. Two examples of dissections. In a (geometric) dissection one can
rearrange the pieces freely to turn one shape into the other. In a hinged
dissection the pieces are connected with hinges at the corners, and they are
allowed to swing to go in between the shapes. (b) is from [Akiyama et al.
2020].

A variant of dissections is hinge dissections, where the pieces are
connected by a hinge at the corners (Figure 1b). By turning the
pieces around their hinges one can rearrange one shape into another.
Abbott et al. [2012] showed that any finite collection of polygons
of equal area has a hinged dissection. By making an additional
requirement we get a reversible hinged dissection: here the pieces
are connected in a simple path (as opposed to a tree), and the rotation
at every hinge goes from being clockwise in one configuration to
counter-clockwise for the other. Li et al. [2018] proposed a method
for computing approximate reversible hinged dissections.

In this project we look at another variation called twist-hinge dissec-
tions. This is a dissection where adjacent pieces are connected by a
rod at their common edge, allowing rotation around the rods axis
(Figures 2 and 3). The rotation causes the pieces to temporarily go
out of plane, but by rotating 𝑘 · 180 degrees for some integer 𝑘 we
end up with another planar configuration.
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1.1 Applications
Dissections in general have many practical applications, for instance
(1) multi-purpose and re-configurable furniture [Song et al. 2017];
(2) objects can be stored and shipped in a compact tillable shape,
and reconfigured to its final shape; (3) programmable materials
where logic is encoded in the shape; reconfigured the dissection
and changing the shape reprograms the material; (4) motorized
and programmable hinges can be used for robotics; (5) recreational
puzzles.

1.2 Open Problems
Since the literature is sparse on this topic there are many natural
questions that are still open.

1.2.1 Twist-Hinge Dissections. To our knowledge there are no uni-
versality results on twist-hinge dissections. Which shapes have such
a dissection? Which natural shape pairs admit a nice approximation
for a twist-hinge dissection? How do we compute the dissection,
and how do we ensure that the pieces are possible to fabricate?

Fig. 2. An example of a twist-hinge dissection in which a hexagon is trans-
formed into an equilateral triangle. From [Frederickson 2010].

Fig. 3. The evolution of a twist-hinge dissection of an equilateral triangle
morphing into a square. Note how the purple pentagon at the base of the
triangle is almost purely translated from its initial to final position; this is
due to it being an even number of hinges away from the fixed hexagon at
the tip of the triangle, as well as the rotations of its hinges canceling out.
All pieces with an odd number of hinges to the fixed hexagon are flipped.
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1.2.2 Rotation Scheduling. If we rotate one hinge at a time it is often
the case that the intermediate flat configurations in between the
rotations is overlapping with itself, and if we try to rotate multiple
hinges at the same time the pieces can collide mid-air. The green
and purple pieces in Figure 3 are nearly colliding in the middle row
frames, and indeed, it is possible to adjust the rotations slightly
so that they do collide. Figure 4 shows a sequence of rotations
where all intermediary states are non-overlapping, but it is easy to
find examples of hinges that would make pieces overlap had they
been turned. Scheduling the rotations to guarantee a collision-free
trajectory is an interesting problem. One could also minimize the
time spent performing the rotations.

1.2.3 Physically Aware Dissections. In the scheduling problem above
we are already given the dissection. Complex dissections might re-
quire adding additional cuts with hinges that are only partially
rotated, and then rotated back to its original position, to avoid
collisions. Adding in physical based constraints to the problem for-
mulation of deciding the dissection could be valuable.

If the hinges are motorized, the torque they can apply is bounded, so
it would be interesting to compute a rotation sequence that would
minimize the maximal torque required for the transformation. A
slight variation of this problem is to look at the maximal stresses
on the hinges, or the pieces themselves, to ensure that they do not
break during the rotation. This would be natural to combine with
the collision-free requirement so that the trajectories are feasible in
the real world.

1.3 Attacks
Here are some attack angles on the sub-problems from Section 1.2
that would be good places to start.

1.3.1 A Smooth Map. Given a dissection we can reason about its
behavior when the pieces are rotated around the hinges. The con-
nectivity of the pieces form a tree, and by fixing an arbitrary piece
as the root we can compute affine transformations consisting of
reflections around points and axes for the remaining pieces. The
final piece positions are smooth functions of the positions of the
dissection cuts, since they are compositions of affine transforma-
tions. Maybe it is possible to formulate an optimization problem to
approximate a second shape based on this.

1.3.2 A Bottom Up Approach. There are universality theorems for
regular dissections and hinged dissections in the literature, and a
necessary and sufficient condition for two shapes to have reversible
hinged dissections has also been found [Akiyama et al. 2020]. To my
knowledge there are no such results for twist-hinges. It would be
natural to try to characterize the space of shapes that admit a twist-
hinged dissection, even though finding a complete characterization
is not the main objective of the project. This could give us intuition
of the space, as well as heuristics to guide a search or algorithms
that work for shapes under certain constraints.

1.3.3 Greedy Decomposition. The theoretical results in dissection
often involves finding gadgets that implements a certain behavior,
like moving a hinge from one side of a polygon to another. If we can
find small gadgets for twist-hinges we can triangulate the target

shapes and introduce gadgets to move the triangles where we need
them to move. This will very likely make the number of pieces far
too large and the pieces too small, but by approximating the shapes
we can greedily merge pieces into larger but less accurate pieces
until we have a sufficient number of pieces.

1.3.4 Collision Testing. Given all joint angles {𝜃𝑖 } we can compute
the planes for all pieces. If two pieces are intersecting that means
that their planes intersect such that the intersection line is intersect-
ing the piece polygons in their planes, in the same place. For the
thickened pieces we can compute a threshold 𝜖 (𝑤) as a function of
the width𝑤 , and adjust the line-polygon intersection test so that a
non-intersection implies that the pieces does not intersect.

To compute which hinges should rotate at the same time we can
impose the constraint that they should rotate synchronously with
the same angular speed. Now we need to compute whether any pair
of pieces intersect when a subset of the hinges are rotated by any of
the angles 𝜃 ∈ [0, 𝜋]. One approach is to bound the angle increment
required when going from a non-intersecting configuration to a
intersecting one, by bounding the speed at which the plane-plane
intersection lines move, and use this to search for an intersecting
configuration. If the bound is sufficiently tight this should be feasible,
since we can check all piece pairs in parallel.

1.3.5 Rotation Scheduling. To find which rotations we can perform
at the same time we could use a greedy approach where we impose
an arbitrary ordering {𝜃1, . . . , 𝜃𝑛} of all the rotations. Then we go
through the rotations in order and perform the ones that are feasible
so that the rotated configuration doesn’t self intersect during or
after the rotations. The ordering of the rotations will decide the
quality of the scheduling, in the sense that a bad ordering will give
us a bad schedule, but the best ordering will give us the optimal
schedule. There might exist good heuristics for finding orderings
with provable guarantees on the resulting schedule.

Fig. 4. A complex example of a twist-hinge dissection. Here a {8/3}-star is
transformed into a regular hexagon. From [Frederickson 2007].
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