
A Philosophy of Software Design by John Ousterhout Sheet by Martin Hafskjold Thoresen

Design Principles
Here are the most important software design prin-
ciples discussed in this book:

1. Complexity is incremental: you have to sweat
the small stuff.

2. Working code isn’t enough.
3. Make continual small investments to improve

system design.
4. Modules should be deep.
5. Interfaces should be designed to make the

most common usage as simple as possible.
6. It’s more important for a module to have a sim-

ple interface than a simple implementation.
7. General-purpose modules are deeper.
8. Separate general-purpose and special-purpose

code.
9. Different layers should have different abstrac-

tions.
10. Pull complexity downward.
11. Define errors (and special cases) out of exis-

tence.
12. Design it twice.
13. Comments should describe things that are not

obvious from the code.
14. Software should be designed for ease of read-

ing, not ease of writing.
15. The increments of software development

should be abstractions, not features.

Red Flags
Here are a few of of the most important red flags
discussed in this book. The presence of any of
these symptoms in a system suggests that there is
a problem with the system’s design:

Shallow Module: The interface for a class or
method isn’t much simpler than its implementa-
tion.

Information Leakage: A design decision is re-
flected in multiple modules.

Temporal Decomposition: The code structure is
based on the order in which operations are exe-
cuted, not on information hiding.

Overexposure: An API forces callers to be aware
of rarely used features in order to use commonly
used features.

Pass-Through Method: A method does almost
nothing except pass its arguments to another
method with a similar signature.

Repetition: A nontrivial piece of code is repeated
over and over.

Special-General Mixture: Special-purpose code
is not cleanly separated from general purpose
code.

Conjoined Methods: Two methods have so many
dependencies that its hard to understand the im-

plementation of one without understanding the
implementation of the other.

Comment Repeats Code: All of the information
in a comment is immediately obvious from the
code next to the comment.

Implementation Documentation Contami-
nates Interface: An interface comment describes
implementation details not needed by users of the
thing being documented.

Vague Name: The name of a variable or method
is so imprecise that it doesn’t convey much useful
information.

Hard to Pick Name: It is difficult to come up with
a precise and intuitive name for an entity.

Hard to Describe: In order to be complete, the
documentation for a variable or method must be
long.

Nonobvious Code: The behavior or meaning of a
piece of code cannot be understood easily.

	Design Principles
	Red Flags

